1,919 research outputs found

    Exact Site Percolation Thresholds Using the Site-to-Bond and Star-Triangle Transformations

    Full text link
    I construct a two-dimensional lattice on which the inhomogeneous site percolation threshold is exactly calculable and use this result to find two more lattices on which the site thresholds can be determined. The primary lattice studied here, the ``martini lattice'', is a hexagonal lattice with every second site transformed into a triangle. The site threshold of this lattice is found to be 0.764826...0.764826..., while the others have 0.618034...0.618034... and 1/21/\sqrt{2}. This last solution suggests a possible approach to establishing the bound for the hexagonal site threshold, pc<1/2p_c<1/\sqrt{2}. To derive these results, I solve a correlated bond problem on the hexagonal lattice by use of the star-triangle transformation and then, by a particular choice of correlations, solve the site problem on the martini lattice.Comment: 12 pages, 10 figures. Submitted to Physical Review

    A hybrid metal/semiconductor electron pump for quantum metrology

    Full text link
    Electron pumps capable of delivering a current higher than 100pA with sufficient accuracy are likely to become the direct mise en pratique of the possible new quantum definition of the ampere. Furthermore, they are essential for closing the quantum metrological triangle experiment which tests for possible corrections to the quantum relations linking e and h, the electron charge and the Planck constant, to voltage, resistance and current. We present here single-island hybrid metal/semiconductor transistor pumps which combine the simplicity and efficiency of Coulomb blockade in metals with the unsurpassed performances of silicon switches. Robust and simple pumping at 650MHz and 0.5K is demonstrated. The pumped current obtained over a voltage bias range of 1.4mV corresponds to a relative deviation of 5e-4 from the calculated value, well within the 1.5e-3 uncertainty of the measurement setup. Multi-charge pumping can be performed. The simple design fully integrated in an industrial CMOS process makes it an ideal candidate for national measurement institutes to realize and share a future quantum ampere

    A review on coordination properties of thiol-containing chelating agents towards mercury, cadmium, and lead

    Get PDF
    The present article reviews the clinical use of thiol-based metal chelators in intoxications and overexposure with mercury (Hg), cadmium (Cd), and lead (Pb). Currently, very few commercially available pharmaceuticals can successfully reduce or prevent the toxicity of these metals. The metal chelator meso-2,3-dimercaptosuccinic acid (DMSA) is considerably less toxic than the classical agent British anti-Lewisite (BAL, 2,3-dimercaptopropanol) and is the recommended agent in poisonings with Pb and organic Hg. Its toxicity is also lower than that of DMPS (dimercaptopropane sulfonate), although DMPS is the recommended agent in acute poisonings with Hg salts. It is suggested that intracellular Cd deposits and cerebral deposits of inorganic Hg, to some extent, can be mobilized by a combination of antidotes, but clinical experience with such combinations are lacking. Alpha-lipoic acid (alpha-LA) has been suggested for toxic metal detoxification but is not considered a drug of choice in clinical practice. The molecular mechanisms and chemical equilibria of complex formation of the chelators with the metal ions Hg2+, Cd2+, and Pb2+ are reviewed since insight into these reactions can provide a basis for further development of therapeutics

    Connecting the timescales in picosecond remagnetization experiments

    Full text link
    In femtosecond demagnetization experiments, one gains access to the elementary relaxation mechanisms of a magnetically ordered spin system on a time scale of 100 fs. Following these experiments, we report a combined micromagnetic and experimental study that connects the different regimes known from all-optical pump-probe experiments by employing a simple micromagnetic model. We identify spin-wave packets on the nanometer scale that contribute to the remagnetization process on the intermediate time scale between single-spin relaxation and collective precession.Comment: 12 pages, 3 figures, submitted to Phys. Rev. Lett, changes made with regard to review proces

    Secret key distillation across a quantum wiretap channel under restricted eavesdropping

    Full text link
    The theory of quantum cryptography aims to guarantee unconditional information-theoretic security against an omnipotent eavesdropper. In many practical scenarios, however, the assumption of an all-powerful adversary is excessive and can be relaxed considerably. In this paper we study secret key distillation across a lossy and noisy quantum wiretap channel between Alice and Bob, with a separately parameterized realistically lossy quantum channel to the eavesdropper Eve. We show that under such restricted eavesdropping, the key rates achievable can exceed the secret key distillation capacity against an unrestricted eavesdropper in the quantum wiretap channel. Further, we show upper bounds on the key rates based on the relative entropy of entanglement. This simple restricted eavesdropping model is widely applicable, e.g., to free-space quantum optical communication, where realistic collection of light by Eve is limited by the finite size of her optical aperture. Future work will include calculating bounds on the amount of light Eve can collect under various realistic scenarios.Comment: 14 pages, 19 figures. We welcome comments and suggestion

    The Emerging QCD Frontier: The Electron Ion Collider

    Full text link
    The self-interactions of gluons determine all the unique features of QCD and lead to a dominant abundance of gluons inside matter already at moderate xx. Despite their dominant role, the properties of gluons remain largely unexplored. Tantalizing hints of saturated gluon densities have been found in ee+p collisions at HERA, and in d+Au and Au+Au collisions at RHIC. Saturation physics will have a profound influence on heavy-ion collisions at the LHC. But unveiling the collective behavior of dense assemblies of gluons under conditions where their self-interactions dominate will require an Electron-Ion Collider (EIC): a new facility with capabilities well beyond those In this paper I outline the compelling physics case for ee+A collisions at an EIC and discuss briefly the status of machine design concepts. of any existing accelerator.Comment: 11 pages, 9 figures, prepared for 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions: Quark Matter 2008 (QM2008), Jaipur, India, 4-10 Feb. 200

    Inclusion of Experimental Information in First Principles Modeling of Materials

    Full text link
    We propose a novel approach to model amorphous materials using a first principles density functional method while simultaneously enforcing agreement with selected experimental data. We illustrate our method with applications to amorphous silicon and glassy GeSe2_2. The structural, vibrational and electronic properties of the models are found to be in agreement with experimental results. The method is general and can be extended to other complex materials.Comment: 11 pages, 8 PostScript figures, submitted to J. Phys.: Condens. Matter in honor of Mike Thorpe's 60th birthda

    Heavy-Quark Diffusion, Flow and Recombination at RHIC

    Full text link
    We discuss recent developments in assessing heavy-quark interaction in the Quark-Gluon Plasma (QGP). While induced gluon radiation is expected to be the main energy-loss mechanism for fast-moving quarks, we focus on elastic scattering which prevails toward lower energies, evaluating both perturbative (gluon-exchange) and nonperturbative (resonance formation) interactions in the QGP. The latter are treated within an effective model for D- and B-meson resonances above T_c as motivated by current QCD lattice calculations. Pertinent diffusion and drag constants, following from a Fokker-Planck equation, are implemented into an expanding fireball model for Au-Au collisions at RHIC using relativistic Langevin simulations. Heavy quarks are hadronized in a combined fragmentation and coalescence framework, and resulting electron-decay spectra are compared to recent RHIC data. A reasonable description of both nuclear suppression factors and elliptic flow up to momenta of ~5 GeV supports the notion of a strongly interacting QGP created at RHIC. Consequences and further tests of the proposed resonance interactions are discussed.Comment: 8 pages, 14 figures, contribution to the proceedings for the "International Conference on Strangeness in Quark Matter 2006

    Electrorotation of a pair of spherical particles

    Full text link
    We present a theoretical study of electrorotation (ER) of two spherical particles under the action of a rotating electric field. When the two particles approach and finally touch, the mutual polarization interaction between the particles leads to a change in the dipole moment of the individual particle and hence the ER spectrum, as compared to that of the well-separated particles. The mutual polarization effects are captured by the method of multiple images. From the theoretical analysis, we find that the mutual polarization effects can change the characteristic frequency at which the maximum angular velocity of electrorotation occurs. The numerical results can be understood in the spectral representation theory.Comment: Minor revisions; accepted by Phys. Rev.

    Resilience to cope with climate change in urban areas - A multisectorial approach focusing on water - The RESCCUE project

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordThe RESCCUE Project is an H2020 research project that aims to help cities around the world to become more resilient to physical, social, and economic challenges, using the water sector as the central point of the approach. RESCCUE will generate models and tools to bring this objective to practice, while delivering a framework enabling city resilience assessment, planning and management. This will be achieved by integrating software tools, methods, and new knowledge related to the detailed urban services performance into novel and promising loosely coupled models (integrated models), multi-risk assessment method, and a comprehensive resilience platform. These tools will allow urban resilience assessment from a multisectorial approach, for current and future climate change scenarios, including multiple hazards and cascading effects. The RESCCUE approach will be implemented in three EU cities (Barcelona, Bristol, and Lisbon) and, with the support of UN-Habitat, disseminate their results among other cities belonging to major international networks. The aim of this paper is to present the main goals of this project, as well as the approach followed and the main expected results after the four years of implementation, so other cities around the world can use the RESCCUE approach to increase their resilience.The RESCCUE Project (RESilience to cope with Climate Change in Urban arEas—a multisectorial approach focusing on water) has received funding from European Commission by means of Horizon 2020, the EU Framework Program for Research and Innovation, under Grant Agreement No. 700174
    corecore